Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37512350

RESUMEN

Force sensors on climbing robots give important information to the robot control system, however, off-the-shelf sensors can be both heavy and bulky. We investigate the optimisation of a lightweight integrated force sensor made of piezoelectric material for the multi-limbed climbing robot MAGNETO. We focus on three design objectives for this piezoelectric component. The first is to develop a lightweight component with minimal compliance that can be embedded in the foot of the climbing robot. The second objective is to ensure that the component has sensing capability to replace the off-the-shelf force sensor. Finally, the component should be robust for a range of climbing configurations. To this end, we focus on a compliance minimisation problem with constrained voltage and volume fraction. We present structurally optimised designs that satisfy the three main design criteria and improve upon baseline results from a reference component. Our computational study demonstrates that the optimisation of embedded robotic components with piezoelectric sensing is worthy of future investigation.

2.
J Biomech Eng ; 139(3)2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27996078

RESUMEN

We present a new approach to designing three-dimensional, physically realizable porous femoral implants with spatially varying microstructures and effective material properties. We optimize over a simplified design domain to reduce shear stress at the bone-prosthetic interface with a constraint on the bone resorption measured using strain energy. This combination of objective and constraint aims to reduce implant failure and allows a detailed study of the implant designs obtained with a range of microstructure sets and parameters. The microstructure sets are either specified directly or constructed using shape interpolation between a finite number of microstructures optimized for multifunctional characteristics. We demonstrate that designs using varying microstructures outperform designs with a homogeneous microstructure for this femoral implant problem. Further, the choice of microstructure set has an impact on the objective values achieved and on the optimized implant designs. A proof-of-concept metal prototype fabricated via selective laser melting (SLM) demonstrates the manufacturability of designs obtained with our approach.


Asunto(s)
Fémur , Diseño de Prótesis , Resorción Ósea/etiología , Prótesis e Implantes/efectos adversos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...